C10-C1-B1	114.93 (14)	C20—C2—B2	115.73 (14)
C10-C1-B2	115.81 (14)	C20-C2-B1	113.97 (14)
C10-C1-B7	121.77 (14)	C20-C2-B8	122.67 (14)
C10-C1-B5	118.18 (14)	C20-C2-B6	120.46 (15)
C10-C1-B3	119.68 (14)	C20-C2-B4	117.71 (14)
O10-C10-N10	124.8 (2)	O20-C20-N20	125.1 (2)
O10-C10-C1	120.4 (2)	O20-C20-C2	120.4 (2)
N10-C10-C1	114.8 (2)	N20-C20-C2	114.5 (2)
C10-N10-C11	125.3 (2)	C20N20C21	128.0 (2)
C12-C11-C16	120.5 (2)	C22-C21-C26	120.5 (2)
C12-C11-N10	121.1 (2)	C22-C21-N20	123.2 (2)
C16-C11-N10	118.3 (2)	C26-C21-N20	116.4 (2)
B1-C1-C10-010	-18.3 (4)	B1C2C20O20	32.6 (4)
B2-C1-C10-010	52.8 (4)	B2-C2-C20-O20	-38.1 (4)
C11_N10_C10O10	-2.3(5)	C21-N20-C20-O20	-3.0 (5)

Program used to solve structure: *SHELXTL-Plus* (Sheldrick, 1989). Program used to refine structure: *SHELXL*93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1141). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Brisson, J. & Brisse, F. (1985). Can. J. Chem. 63 3390-3397.
- Brisson, J. & Brisse, F. (1986). Macromolecules, 19, 2632-2639.
- Leites, L. A., Kats, G. A., Bukalov S. S. & Komarova, L. G. (1991). Izv. Akad. Nauk SSSR Ser. Khim. pp. 371-376.
- Ruede, D. R. & Fayos, J. (1982). Eur. Polym. J. 18, 1-4.
- Sheldrick, G. M. (1989). SHELXTL-Plus. PC version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 1301-1303

Bis(triphenylphosphine)iminium Hexafluorophosphate Dichloromethane Solvate (1/1)

ALEXANDER J. BLAKE, GIDEON FREEMAN, BRIAN F. G. JOHNSON AND GORDON S. MCDOUGALL

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 14 January 1994; accepted 2 February 1994)

Abstract

Bis(triphenylphosphine)iminium hexafluorophosphate [or bis(phosphoranylidene)ammonium hexafluorophosphate] crystallizes from dichloromethane/hexane as a (1/1) solvate, $[C_{36}H_{30}NP_2][PF_6].CH_2Cl_2$, in which the

 \bigcirc 1994 International Union of Crystallography Printed in Great Britain – all rights reserved CH_2Cl_2 molecule is extensively disordered. The cation and anion are essentially ions linked by some short intermolecular contacts.

Comment

The bis(triphenylphosphine)iminium cation $[Ph_3P = N^+ = PPh_3]$ has found extensive use as a large non-interacting organic cation for the crystallization of anionic inorganic species: overwhelmingly these anions are metal carbonyl clusters (*e.g.* Bailey, Conole, Johnson, Lewis, McPartlin, Moule & Wilkinson, 1991) but there are also examples of boranes (Meyer, Muller, Paetzold & Boese, 1992), sulfur-nitrogen species (Chivers, Laidlaw, Oakley & Trsic, 1980) and chloro complexes (Fanwick, King, Tetrick & Walton, 1985).

In bis(triphenylphosphine)iminium hexafluorophosphate dichloromethane solvate, (I), the ions are essen-

tially isolated but linked by relatively short intermolecular contacts $[H216\cdots F1(at x, 1 + y, z) = 2.25(1) \text{ Å}]$. Hexafluorophosphate (PF_6^-) anions typically exhibit a range of disorder modes at ambient temperature involving marked libration or free rotation of the F atoms about one or more axes passing through the P atom. A study of a large number of PF_6^- salts at temperatures below *ca* 180 K has shown that the F atoms then usu-

Fig. 1. A view of the ion pair with the atom-numbering scheme employed. Displacement ellipsoids for P, F and N atoms are drawn at the 30% probability level.

C122

C123

C124

0.3188 (4)

0.3066 (4)

0.3846 (5)

0.4748 (5)

0.3375 (4)

0.3573 (4)

0.2827 (5)

0.1882 (5)

0.0195 (3)

-0.0791 (4)

-0.1430(3)

-0.1083(3)

0.055 (2)

0.073 (2)

0.080 (3)

0.072 (2)

ally appear to be ordered (Blake, 1994). In this roomtemperature study the anion is essentially ordered but the dichloromethane solvate molecule is extensively disor-C125 darad

dered	•	C126	0.4870 (4)	0.1683 (4)	-0.0097(4)	0.061 (2)
dered:		C131	0.3622 (4)	0.3472 (3)	0.2204 (3)	0.040 (2)
		C132	0.2698 (4)	0.3566 (3)	0.3155 (3)	0.051 (2)
Exnerimental		C133	0.2347 (4)	0.4622 (4)	0.3450 (3)	0.061 (2)
		C134	0.2919 (5)	0.5585 (3)	0.2793 (4)	0.066 (2)
Crystal data		C135	0.3842 (4)	0.5490 (3)	0.1842 (4)	0.064 (2)
C. H. NPt PET CH.Cl.	Mo Ko rediction	C136	0.4194 (4)	0.4434 (4)	0.1548 (3)	0.052 (2)
		C211	0.7646 (3)	0.2546 (4)	0.1251 (3)	0.044 (2)
$M_r = /68.45$	$\lambda = 0./10/3 \text{ A}$	C212	0.7637 (4)	0.2955 (4)	0.0202 (3)	0.053 (2)
Friclinic	Cell parameters from 12	C213	0.8532 (4)	0.3569 (4)	-0.0589 (2)	0.064 (2)
P1	reflections	C214	0.9436 (4)	0.3773 (4)	-0.0331 (3)	0.066 (2)
a = 12.044.(5) Å	$A = 11 - 12^{\circ}$	C215	0.9446 (4)	0.3364 (4)	0.0718 (4)	0.061 (2)
I = 12.044 (5) A	0 = 11 = 12	C216	0.8551 (4)	0.2750 (4)	0.1509 (3)	0.051 (2)
b = 12.270(5) Å	$\mu = 0.381 \text{ mm}^{-1}$	C221	0.5796 (4)	0.2314 (4)	0.3351 (3)	0.039 (2)
c = 14.282 (6) A	T = 293 (1) K	C222	0.5868 (4)	0.3446 (3)	0.3305 (3)	0.050 (2)
$\alpha = 68.14 (2)^{\circ}$	Column	C223	0.5164 (4)	0.3924 (3)	0.4158 (4)	0.058 (2)
$\beta = 66.968.(13)^{\circ}$	$0.9 \times 0.5 \times 0.5$ mm	C224	0.4389 (4)	0.3269 (4)	0.5057 (3)	0.063 (2)
5 = 00.900 (13)		C225	0.4318 (4)	0.2137 (4)	0.5104 (3)	0.056 (2)
$\gamma = 71.043 (14)$	Colourless	C226	0.5021 (4)	0.1660 (3)	0.4251 (3)	0.049 (2)
$V = 1762.6 (13) \text{ A}^3$		C231	0.7438 (4)	0.0220 (3)	0.2747 (3)	0.043 (2)
Z = 2		C232	0.7925 (4)	0.0005 (4)	0.3554 (3)	0.048 (2)
$D_{\rm m} = 1.448 {\rm Mg}{\rm m}^{-3}$		C233	0.8645 (4)	-0.1116 (4)	0.3901 (3)	0.061 (2)
$\mathcal{I}_{\mathcal{I}} = 1.440$ Mg m		C234	0.88/8(4)	-0.2024 (3)	0.3442 (4)	0.066 (2)
		C235	0.8390 (5)	-0.1810(3)	0.2635 (4)	0.066 (2)
Data collection		C236	0.7670(4)	-0.0688 (4)	0.2287 (3)	0.052 (2)
Stoe Stadi-4 four-circle	2518 observed reflections	P3	0.8861 (2)	-0.5938(2)	0.3722(2)	0.0564 (6)
diffractometer	$[I > 2\sigma(I)]$	FI F2	0.8023 (3)	-0.7125(4)	0.3/02(4)	0.098 (2)
(20 second fundation (0.0)	[1 > 20(1)]	F2 F2	0.9/3/(4)	-0.0/31 (4)	0.4424 (4)	0.090 (2)
$\omega/2\theta$ scans [width (0.9 +	$\theta_{\rm max} = 22.51^{\circ}$	F3 E4	1.0008 (3)	-0.3983 (3)	0.2096 (4)	0.112(2)
$(0.35 \tan \theta)^{\circ}$ in ω	$h = -11 \rightarrow 12$	F5	0.8010(3)	-0.3139 (4)	0.2990(4)	0.101(2)
Absorption correction:	$k = -11 \rightarrow 13$	F6	0.7712(3)	-0.3933(0)	0.4753(4)	0.110(2)
semi-empirical (1/2 scans)	$l = 0 \rightarrow 15$	C18+	0.9080(7)	-0.4779(3)	0.3739(0)	0.138(2)
T = 0.195 $T = -$	2 standard reflections	C25+	0.9333 (23)	0.0004 (20)	0.9011(19) 0.0217(22)	0.113 (8)
$T_{\min} = 0.183, T_{\max} =$	3 standard renections	C115+	0.8827 (23)	0.0994(23)	0.9217(22)	0.133(8)
0.255	frequency: 120 min	C1258	0.0000 (4)	-0.0873(4)	0.9392(3)	0.135(2)
4551 measured reflections	intensity variation: 3%	C135¶	0.9239(17)	0.0304 (17)	0.9755(15)	0.123(0)
4551 independent reflections	5	C145†	0.9029(12) 0.8148(4)	0.0028 (12)	0.0007(10)	0.120(4) 0.154(2)
issi maepenaent teneettons		C1+01	0.0140 (4)	0.1377 (4)	0.0239 (4)	0.134(2)

U_{eq} 0.0381 (5)

0.0379 (5)

0.0417 (13)

0.039(2)

0.046 (2)

0.059 (2)

0.063 (2)

0.060(2)

0.050(2)

0.044(2)

0.2706 (3)

0.3216(3)

0.3872 (3)

0.4017 (3)

0.3507 (4)

0.2851 (3)

0.0542 (3)

Refinement

P1

P2

N1

C111

C112

C113

C114

C115

C116

C121

0.3798 (3)

0.3055 (4)

0.1789 (4)

0.1266 (3)

0.2010 (3)

0.4090 (4)

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.036$
$R[F^2 > 2\sigma(F^2)] = 0.0644$	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1682$	$\Delta \rho_{\min} = -0.50 \text{ e } \text{\AA}^{-3}$
S = 1.165	Extinction correction: none
4524 reflections	Atomic scattering factors
377 parameters	from International Tables
H-atom parameters not	for Crystallography (1992)
refined	Vol. C, Tables 4.2.6.8 and
Calculated weights	6.1.1.4)
$w = 1/[\sigma^2(F_o^2) + (0.1054P)^2]$	
+ 2.3325P]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$			
x	у	Z	
0.42324 (15)	0.21064 (14)	0.18293 (13)	
0.65493 (15)	0.16838 (15)	0.22587 (13)	
0.5639 (4)	0.1528 (4)	0.1783 (4)	
0.3276 (3)	0.1047 (3)	0.2706 (3)	

0.1047 (3)

-0.0108 (4)

-0.0939(3)

-0.0617(4)

0.0538 (4)

0.1370 (3)

0.2429 (4)

 \dagger Site occupancy factor = 0.5. \ddagger Site occupancy factor = 0.78.

§ Site occupancy factor = 0.19.

¶ Site occupancy factor = 0.26.

Table 2. Selected geometric parameters (Å, °)

P1—N1	1.595 (5)	P2-C231	1.805 (3)
P1-C131	1.787 (3)	P3—F1	1.585 (5)
P1-C111	1.794 (3)	P3F2	1.585 (5)
P1-C121	1.797 (4)	P3F3	1.577 (5
P2-N1	1.587 (5)	P3—F4	1,590 (5)
P2-C221	1.787 (3)	P3—F5	1.578 (5
P2—C211	1.795 (3)	P3—F6	1.554 (5)
N1-P1-C131	114.6 (2)	C212-C211-P2	120.2 (2)
N1-P1-C111	110.5 (2)	C222—C221—P2	123.3 (2
C131—P1—C111	109.2 (2)	C226-C221-P2	116.4 (2)
N1P1C121	108.9 (2)	C236-C231-P2	119.6 (2)
C131—P1—C121	107.4 (2)	C232—C231—P2	120.4 (2)
C111—P1—C121	105.8 (2)	F6-P3-F3	91.2 (4)
N1—P2—C221	114.4 (2)	F6P3F5	91.3 (4)
N1-P2-C211	111.2 (2)	F3P3F5	177.4 (4)
C221—P2—C211	109.9 (2)	F6-P3-F1	179.2 (4)
N1—P2—C231	108.5 (2)	F3—P3—F1	89.5 (3)
C221-P2-C231	106.4 (2)	F5P3F1	87.9 (3)
C211-P2-C231	106.1 (2)	F6-P3-F2	91.0 (3)
P2—N1—P1	134.3 (3)	F3—P3—F2	89.2 (3)
C116C111-P1	119.8 (2)	F5-P3-F2	90.2 (3)
C112—C111—P1	120.2 (2)	F1—P3—F2	88.7 (3)
C122—C121—P1	121.3 (3)	F6-P3-F4	89.8 (3)
C126C121P1	118.7 (3)	F3-P3-F4	89.3 (3)
C132-C131-P1	122.8 (2)	F5-P3-F4	91.3 (3)
C136C131-P1	116.9 (2)	F1-P3-F4	90.6 (3)
C216-C211-P2	119.7 (2)	F2—P3—F4	178.3 (3)

Data collection: *DIF*4 (Stoe & Cie, 1988a). Cell refinement: *DIF*4. Data reduction: *REDU*4 (Stoe & Cie, 1988b). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL* (Sheldrick, 1994). Molecular graphics: *SHELXTL/PC* (Sheldrick, 1992).

We thank the University of Edinburgh for support (to GF) and the SERC for the provision of a diffractometer.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: HA1099). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bailey, P. J., Conole, G. C., Johnson, B. F. G., Lewis, J., McPartlin, M., Moule, A. & Wilkinson, D. A. (1991). Angew. Chem. Int. Ed. Engl. 30, 1706–1707.
- Blake, A. J. (1994). Unpublished observations.
- Chivers, T., Laidlaw, W. G., Oakley, R. T. & Trsic, M. (1980). J. Am. Chem. Soc. 102, 5773-5781.
- Fanwick, P. E., King, M. K., Tetrick, S. M. & Walton, R. A. (1985). J. Am. Chem. Soc. 107, 5009–5011.
- Meyer, F., Muller, J., Paetzold, P. & Boese, R. (1992). Angew. Chem. Int. Ed. Engl. 31, 1227-1229.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1992). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1994). C50, 1303-1305

1,7,9-Trimethyl-2,6-purinedione Monohydrate, C₈H₁₀N₄O₂.H₂O

MASOOD PARVEZ

Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

GEORGE FERGUSON

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 13 July 1993; accepted 11 November 1993)

Abstract

The fused-ring system is essentially planar. Both N atoms of the five-membered ring are methylated

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved with a delocalized positive charge (resulting in a zwitterionic structure, 1,7,9-trimethyl-2,6-dioxo-1,3-dihydropurin-(7/9)-ium-3-ide). One N atom of the six-membered ring is also methylated and the other has a formal negative charge. The crystal contains three types of hydrogen bonding, $O-H\cdots O$, $O-H\cdots N$ and $C-H\cdots O$ with $O\cdots O$ 2.918 (3), $O\cdots N$ 2.896 (3) and $C\cdots O$ 3.009 (3) Å, and $H\cdots$ acceptor 2.05 (4)–2.06(4) Å.

Comment

The analysis established the structure of the title compound, (1), to be as shown in the scheme below and in Fig. 1. The bond lengths are consistent with a significant contribution from the resonance form shown with a formal negative charge on N(3) and the positive charge in the five-membered ring delocalized over N(7) and N(9), resulting in a zwitterionic structure.

In the six-membered ring, bonds involving N(3) (which has a formal negative charge) are the shortest $[N(3)-C(2) \ 1.351 \ (3), \ N(3)-C(4) \ 1.334 \ (3) \ Å]$ and those involving N(1) are longer $[N(1)-C(2) \ 1.434 \ (3), \ N(1)-C(6) \ 1.391 \ (3) \ Å]$. The distances involving C(5) $[C(4)-C(5) \ 1.368 \ (3), \ C(5)-C(6) \ 1.421 \ (3) \ Å]$ are also consistent with a major contribution of the ground-state form with C(4)=C(5) a

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the crystallographic numbering scheme.

Acta Crystallographica Section C ISSN 0108-2701 ©1994